A dynamic role for HDAC7 in MEF2-mediated muscle differentiation.

نویسندگان

  • U Dressel
  • P J Bailey
  • S C Wang
  • M Downes
  • R M Evans
  • G E Muscat
چکیده

The overlapping expression profile of MEF2 and the class-II histone deacetylase, HDAC7, led us to investigate the functional interaction and relationship between these regulatory proteins. HDAC7 expression inhibits the activity of MEF2 (-A, -C, and -D), and in contrast MyoD and Myogenin activities are not affected. Glutathione S-transferase pulldown and immunoprecipitation demonstrate that the repression mechanism involves direct interactions between MEF2 proteins and HDAC7 and is associated with the ability of MEF2 to interact with the N-terminal 121 amino acids of HDAC7 that encode repression domain 1. The MADS domain of MEF2 mediates the direct interaction of MEF2 with HDAC7. MEF2 inhibition by HDAC7 is dependent on the N-terminal repression domain and surprisingly does not involve the C-terminal deacetylase domain. HDAC7 interacts with CtBP and other class-I and -II HDACs suggesting that silencing of MEF2 activity involves corepressor recruitment. Furthermore, we show that induction of muscle differentiation by serum withdrawal leads to the translocation of HDAC7 from the nucleus into the cytoplasm. This work demonstrates that HDAC7 regulates the function of MEF2 proteins and suggests that this class-II HDAC regulates this important transcriptional (and pathophysiological) target in heart and muscle tissue. The nucleocytoplasmic trafficking of HDAC7 and other class-II HDACs during myogenesis provides an ideal mechanism for the regulation of HDAC targets during mammalian development and differentiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of a signal-responsive nuclear export sequence in class II histone deacetylases.

Activation of muscle-specific genes by the MEF2 transcription factor is inhibited by class II histone deacetylases (HDACs) 4 and 5, which contain carboxy-terminal deacetylase domains and amino-terminal extensions required for association with MEF2. The inhibitory action of HDACs is overcome by myogenic signals which disrupt MEF2-HDAC interactions and stimulate nuclear export of these transcript...

متن کامل

The MEF2-HDAC axis controls proliferation of mammary epithelial cells and acini formation in vitro.

The myocyte enhancer factor 2 and histone deacetylase (MEF2-HDAC) axis is a master regulator of different developmental programs and adaptive responses in adults. In this paper, we have investigated the contribution of the axis to the regulation of epithelial morphogenesis, using 3D organotypic cultures of MCF10A cells as a model. We have demonstrated that MEF2 transcriptional activity is upreg...

متن کامل

پاسخ ژن mef2 عضله کند و تند انقباض رت‌های نر نژاد ویستار به یک جلسه تمرین مقاومتی

Introduction: Myocyte Enhancer Factor 2 (mef2) gene relates with multiple myogenic transcriptional factors that induces activation Muscle-specific genes. MEF2 contributes in muscular cells development and differentiation as well as in fibers transition in response to stimulants. Therefore, the aim of this study was to evaluate the effect of one bout of resistance exercise (RE) on mef2 gene expr...

متن کامل

Splicing of HDAC7 modulates the SRF-myocardin complex during stem-cell differentiation towards smooth muscle cells.

Histone deacetylases (HDACs) have a central role in the regulation of gene expression. Here we investigated whether HDAC7 has an impact on embryonic stem (ES) cell differentiation into smooth muscle cells (SMCs). ES cells were seeded on collagen-IV-coated flasks and cultured in the absence of leukemia inhibitory factor in differentiation medium to induce SMC differentiation. Western blots and d...

متن کامل

Histone Deacetylase 7 Maintains Vascular Integrity by Repressing Matrix Metalloproteinase 10

Development and homeostasis of the cardiovascular system require intimate interactions between endothelial and smooth muscle cells, which form a seamless circulatory network. We show that histone deacetylase 7 (HDAC7) is specifically expressed in the vascular endothelium during early embryogenesis, where it maintains vascular integrity by repressing the expression of matrix metalloproteinase (M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 20  شماره 

صفحات  -

تاریخ انتشار 2001